
J Can Chiropr Assoc 2017; 61(3)	 207

Commentary

(JCCA. 2017;61(3):207-211) 
 
k e y  w o r d s : motor control, low back pain, 
chiropractic, gait, prone hip extension, active straight leg 
raise

Developing clinical procedures to diagnose 
specific motor control impairments associated 
with low back pain: prone hip extension (PHE), 
active straight leg raise (ASLR), and gait 
variability
Paul Bruno, DC, PhD1

1	 Associate Professor, Faculty of Kinesiology and Health Studies, University of Regina

Corresponding author:
Paul Bruno, Associate Professor, Faculty of Kinesiology and Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0M2
Tel: (306) 337-3343
E-mail: paul.bruno@uregina.ca

The author has no conflicts of interest to declare regarding this paper or the material described therein.

© JCCA 2017

Motor control can be defined as the ability to regulate 
and direct the mechanisms essential to movement.1 It is 
well-established that the coordination of muscle activity 
around the lumbopelvic region is vital to the generation 
of mechanical spinal stability during static postures and 
dynamic activities.2-4 Models illustrating mechanisms by 
which dysfunctional motor control strategies may serve 
as a potential cause and/or effect of low back pain (LBP) 
have been described by Panjabi5-7 and Hodges8,9, and 
chronic LBP patients have been shown to demonstrate a 
variety of motor control impairments. Two decades ago, 
a series of studies by Hodges and Richardson10-12 dem-
onstrated altered anticipatory control of the transver-
sus abdominis during voluntary upper and lower limb 
movements, which has led to an emphasis on targeting 
this muscle in many rehabilitation programs. However, 
the validity of this approach has been questioned13-15, and 
motor control impairments have also been reported for 
the gluteus maximus16-19, lumbar paraspinal muscles17,19,20, 
and abdominal muscles17,20 in LBP patients during a var-
iety of movements. The findings of recent reviews suggest 
that rehabilitation programs targeting specific motor con-
trol impairments in chronic LBP patients are superior to 
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minimal intervention and general exercise21-24 and gener-
ally comparable to other conservative interventions23-26 in 
improving clinical outcomes. However, as highlighted by 
Hodges8,9, current evidence suggests that the motor con-
trol impairments associated with LBP are highly variable 
(i.e., they do not appear to be uniform within or between 
individuals) and involve multiple levels of the motor con-
trol system. The ability to diagnose the presence of specif-
ic motor control impairments would allow clinicians to 
more effectively individualize and target therapy aimed 
at correcting specific impairments in their patients.14,27,28

	 To this end, the long-term objective of my research 
program is to establish evidence-based clinical proced-
ures that can be used to diagnose the presence of specific 
motor control impairments in individuals with LBP. The 
remainder of this commentary will describe two projects 
currently being conducted in our lab that are focused on 
assessing the clinical utility of the prone hip extension 
(PHE) test, active straight leg raise (ASLR) test, and gait 
variability in diagnosing specific motor control impair-
ments associated with LBP.

Prone Hip Extension (PHE) Test & Active Straight 
Leg Raise (ASLR) Test
The PHE test was originally described as a means of as-
sessing for the presence of a motor control impairment 
associated with the gluteus maximus in individuals with 
LBP.29,30 The test is performed with the patient lying prone 
and alternately lifting each leg away from the table while 
the clinician observes and/or palpates the gluteus max-
imus, hamstrings, and lumbar paraspinal muscles to de-
termine their relative order of activation.29-31 It was sug-
gested that the “normal” motor control strategy for the 
movement was for the gluteus maximus to be recruited 
first, and that delayed recruitment of this muscle repre-
sented a motor control impairment that may lead to the 
development and/or exacerbation of LBP.29-31 However, 
several studies have since demonstrated that it is “nor-
mal” for the gluteus maximus to be recruited after the 
hamstrings and paraspinal muscles in both LBP patients 
and asymptomatic individuals.16,32-35 As a result, Murphy 
et al.36 proposed that, rather than attempt to determine the 
muscle activation order, clinicians should instead observe 
for specific “abnormal” patterns of lumbopelvic motion 
during the test, and that the presence of these patterns 
represented a motor control impairment.

	 The ASLR test has also evolved over time in the liter-
ature. It was originally described as a means of assessing 
the ability of the sacroiliac joints to effectively transfer 
loads between the pelvis and legs in females with preg-
nancy-related pelvic pain.37,38 More recently, it has been 
suggested that the test may be useful in diagnosing the 
presence of motor control impairments in the general LBP 
population.39,40 The test is similar to the PHE test, with 
the patient lying supine (rather than prone) and asked to 
alternately lift each leg away from the table while the 
clinician observes whether the pelvis maintains a neutral 
alignment during the test. An inability to maintain a neu-
tral alignment of the pelvis represents a motor control im-
pairment.41,42

	 Two studies have demonstrated good inter-examiner 
agreement in classifying LBP patients as “positive” or 
“negative” based on the presence or absence, respective-
ly, of the previously-described “abnormal” lumbopelvic 
motion patterns during the PHE test and ASLR test.36,43 
However, there are currently no published studies that 
have: 1) objectively quantified the lumbopelvic motion 
patterns demonstrated by LBP patients during these tests; 
and 2) determined whether any “abnormal” motion pat-
terns demonstrated by LBP patients during these tests are 
associated with specific underlying dysfunctional muscle 
recruitment strategies. Additionally, there are currently no 
published studies to support the notion that the motor con-
trol strategies used during these tests are associated with 
the strategies used during dynamic activities (e.g., gait), 
as has been suggested by some authors.29-31,37,38 Despite 
the similarity in hip joint motion between these tests and 
the hip extension (PHE) and hip flexion (ASLR) phases 
of gait, these tasks are generally quite different. The PHE 
test and ASLR test are non-weight bearing, open kinetic 
chain movements with a stationary base of support, while 
walking is weight bearing and consists of both open and 
closed kinetic chain phases and a continually changing 
base of support. It is therefore likely that the motor con-
trol strategies used to effectively perform these move-
ments would be different.
	 To provide further clarity on these gaps in the litera-
ture, we are currently conducting a study supported by a 
grant co-funded by the Canadian Chiropractic Research 
Foundation (CCRF) and Saskatchewan Health Research 
Foundation (SHRF). Using recently-published motion 
capture models to measure pelvic and regional lumbar 
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motion44,45, the two primary objectives of this study are to: 
1) compare the lumbopelvic motion patterns and muscle 
recruitment strategies demonstrated during the PHE test 
and ASLR test by LBP patients and asymptomatic con-
trols; and 2) compare the lumbopelvic motion patterns 
and muscle recruitment strategies demonstrated during 
the tests and those used during gait. A secondary object-
ive of the study is to determine whether sub-groups of 
LBP patients with clinical signs of lumbar-related LBP 
and sacroiliac-related LBP demonstrate different motor 
control strategies during the tests.46

Gait Variability
Human locomotion involves a repeating cyclical se-
quence of events that take place between the initial con-
tact of one foot and the initial contact of the same foot 
(i.e., one gait cycle or stride). Gait analysis commonly 
involves measuring the spatiotemporal parameters of an 
individual’s gait pattern (e.g., stride length, stride time). 
There is an emerging body of research demonstrating that 
the stride-to-stride fluctuations (i.e., variability) in these 
parameters provide unique insights regarding the status of 
an individual’s locomotor control system. Variability is an 
inherent feature of many human movement patterns, and 
a certain amount of variability is considered to be a fea-
ture of a healthy and adaptable motor control system.47,48 
Gait variability is commonly quantified by calculating the 
standard deviation (SD) or coefficient of variation (CV) 
of the parameter of interest over a series of consecutive 
strides (e.g., stride length SD, stride time CV). Gait pat-
terns have also been shown to possess fractal properties 
that can be quantified using a fractal scaling index (FSI), 
which provides a measure of the long-range, self-simi-
lar patterns that are associated with healthy physiological 
systems.47,49,50 There is a substantial body of evidence that 
gait variability is altered in individuals with a variety of 
neurodegenerative diseases (e.g., Huntington’s disease, 
Parkinson’s disease, amyotrophic lateral sclerosis, mul-
tiple sclerosis)51, and there is emerging evidence that they 
have the potential to serve as a tool to clinically screen for 
an increased risk of falls in older adults52-54.
	 There is also preliminary evidence that gait variability 
is affected by musculoskeletal conditions such as osteo-
arthritis of the knee55,56 and chronic LBP57,58. However, 
there are limitations in the current body of evidence re-
garding gait variability changes associated with LBP, 

including small patient sample sizes (i.e., n=12) and a 
lack of FSI measurements due to the short duration of 
walking trials that have been conducted in the published 
studies to date. One of my Faculty colleagues has recent-
ly developed a method to calculate gait variability over 
longer duration walking trials using data collected from 
body-mounted accelerometers.59 He is also in the process 
of developing a Smartphone app that can calculate gait 
variability using data collected from the accelerometer 
contained in the device. Using this accelerometer-based 
method, we are currently conducting a study that will pro-
vide further insight into the potential usefulness of gait 
variability in assessing for the presence of impairments 
associated with the locomotor control system in individ-
uals with LBP.

Future Directions
Depending on the findings of these studies, future lines 
of inquiry may include an assessment of the effect of 
interventions on restoring normal motor control strategies 
during the PHE test and ASLR test, and normal spatio-
temporal variability patterns during gait, in LBP patients 
and the association between such changes and changes in 
clinical outcomes (e.g., pain, disability).
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